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Background and Clinical Need 
Healthcare-associated infections (HAI) are one of the major 

challenges in medicine: 3.2 million people are estimated to receive 

an infection diagnosis every year in Europe, of whom approximately 

37,000 become fatal [1]. This leads to 16 million extra-days of hospital 

stay, and an annual cost of approximately € 7 billion across Europe [2]. 

The frequency of periprosthetic infections after arthroplasty can vary 

broadly depending on site and type of reconstruction, ranging from 

1-2 % for a primary arthroplasty [3] to as high as 36 % in the case of 

megaprosthesis [4]. It has been calculated that affected patients have 

a lower chance of survival at 5 years than people affected by three of 

the most common types of cancer [5], as illustrated in Figure 1. 

In orthopaedic trauma, it has been estimated that up to 30 % of cases 

may result in infection [6]. Almost 80 % of all open fractures present 

some bacterial contamination [7], many of which may develop into 

early, delayed and/or late established infections. The risk of infection 

can also differ widely depending on the classification of open 

fracture, varying between 0-2 % for Type I fractures, between 2-10 

% for Type II fractures, and between 10-50 % for Type III fractures 

[8, 9]. A recent linear regression analysis of the available literature 

published since 2000 in peer-reviewed journals and conducted by 

Zimmer Biomet estimated that infections following intramedullary 

nailing (IMN) are diagnosed, on average, in the 1.6 % of cases for 

closed fractures and 11.9 % of cases for open fractures, with 0.1 % and 

7.5 % of deep infections in closed and open fractures, respectively 

[10]. A breakdown of overall and deep infection rates per surgical site 

is presented in Table 1. 

Site Overall Infection 
Rate (%)

Deep Infection 
Rate (%)

Tibia 6.46 1.27

Distal Femur 3.92 0.94

Proximal Femur 1.53 0.09

Humerus 1.26 0.79

Ankle 7.9 5.01

Table 1. Rate of infection following IMN [10].

Socioeconomic Impact
Implant associated infections not only have a devastating impact on 

the quality of life of patients, but also have significant socioeconomic 

consequences. 

These infections place a significant personal burden on healthcare 

professionals [11] and an economic burden on healthcare systems. 

It has been estimated that, in Belgium, treatment costs for deep 

infections following tibial fractures are approximately 6.5 times 

higher than uninfected cases [12]. In the UK, infections following 

proximal femoral fractures present a median cost of £ 24,410 with 

length of stay of 132.5 days, compared to uninfected cases that 

present a median cost of £ 7,210 and require a length of stay of 30 

days [13]. In Italy, an average additional cost of € 9,560 was estimated 

in case of orthopaedic surgical site infections [14].

Families and wider society are also hugely impacted [15], as patients 

affected by implant associated infections require additional care 

and assistance, and their mental health is negatively affected [16]; 

younger patients are significantly less likely to return to work within 

a year from fracture [17, 18], and elderly patients have a significantly 

increased risk of mortality and of not returning to their own home 

when they require further surgery following complications after 

fixation of proximal femoral fractures [19]. 

The Role of the Biofilm
The primary challenge with treating or eradicating implant-associated 

infections is the ability of certain bacteria to create a protected 

community called a biofilm. As represented in Figure 2, shortly after 

planktonic or ‘free floating’ bacteria have come into contact with a 

surface, they start to proliferate and embed themselves in an organic 

matrix known as the extracellular polymeric substance (EPS). Inside 

the biofilm, aggregates of bacterial microcolonies are shielded from 

the surrounding environment, making them less susceptible to the 

attacks of the immune system or to regular dosage of antibiotics [20]. 

Figure 1. Five-year survival rate of patients affected by the most 
common forms of cancer, compared to patients affected by 
periprosthetic joint infection [5].
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As the biofilm matures, it can release new planktonic bacteria into the 

environment, resulting in a new cycle of biofilm formation and spread 

of the infection. The entire process from the colonisation of a surface 

by planktonic bacteria to the creation of a mature biofilm can take 

place in a few days [21].

In 2001, the U.S. Centers for Disease Control (CDC) estimated that 

biofilms cause 65 % of infections in the developed world [22,23], 

and the National Institutes of Health (NIH) later referenced 80 % in a 

public announcement in 2007 [24].

Antibiotic Resistance
Current strategies for the control of implant associated infections 

rely primarily on the administration of local and systemic antibiotics. 

However, it is well known that bacteria develop resistance to 

antibiotics, even more so in healthcare facilities rather than in the 

community [25]. Without alternative treatments to antibiotics, it has 

been predicted that, by the year 2050, 10 million people worldwide will 

die every year due to multi-resistant microbial infections, overtaking 

the number of deaths caused by cancer [26]. 

The decreased susceptibility of bacteria grown in biofilms to 

antibiotics highly reduces the chances of eradicating these infections, 

thus further increasing the risk of triggering antibiotic resistance. 

Every year, more than 670,000 infections occur in the EU/EEA due to 

antibiotic-resistant bacteria, with the death of 33,000 people and with 

a cost for healthcare systems of € 1.1 billion as a direct consequence 

[27].

To address the growing concerns over antibiotic resistance and to 

ensure responsible antibiotic stewardship, Bactiguard Technology 

provides an alternative non antibiotic-releasing approach to tackle 

biofilms.

History of Bactiguard Technology [28]
The Bactiguard Technology has its origins in the work of Nobel Prize 

laureate Gustaf Dahlén. His apprentice Axel Bergström developed 

the technique of applying a thin layer of metals to non-conductive 

materials; Bergström’s apprentice, Billy Södervall, started to apply the 

noble metal coating to medical devices in the 70’s, filing numerous 

patents for the technology in the U.S.

The coating was first applied to urinary catheters through a 

partnership with BD (Becton, Dickinson & Company, previously C.R. 

Bard), with the first FDA clearance in 1994. 

The Bactiguard Infection Protection (BIP) technology was then 

developed in the early 2000s, and in 2005 Bactiguard was founded 

as a standalone company, in Sweden. The first BIP urinary catheters 

were introduced to the European market in 2008, and the BIP central 

venous catheters (CVC) and BIP endotracheal tubes (ETT) in 2013. 

In 2013, the technology was also licensed to Vigilenz Medical Devices 

to apply the noble metal coating to orthopaedic trauma products, 

including IM nails, which obtained the CE mark in 2018. Vigilenz was 

acquired by Bactiguard in 2020.

In 2019, Bactiguard and Zimmer Biomet entered into a global, exclusive 

licensing agreement for orthopaedic trauma implants, which led to 

the CE marking of the ZNN™ Bactiguard and ANN™ Bactiguard at the 

beginning of 2021.

The Bactiguard Technology has been applied to medical devices 

outside of orthopaedics for over 25 years, and to date over 200 million 

Bactiguard coated products have been sold worldwide (including 

Europe, U.S., Japan, China, Brazil, India and Mexico) [29].
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Figure 2. Biofilm formation on an implant surface.



The Bactiguard Technology
Coating Characterization
The Bactiguard Technology is a stable and durable metallic coating 

that is firmly bound to the implant surface through strong covalent 

bonds [30,31].

More specifically, the Bactiguard coating is a noble metal alloy 

coating containing silver, gold and palladium that is applied to 

substrates via a wet chemistry process. The coating consists of a thin, 

non-continuous layer of discrete clusters, as shown by the Scanning 

Electron Microscope (SEM) and Time-of-Flight Secondary Ion Mass 

Spectrometry (ToF-SIMS) images in Figure 3 and Figure 4, respectively 

[32]. 

The amount of noble metals released by the coating has been 

shown to be well below the applicable tolerable intake or permitted 

daily exposure, thus demonstrating the toxicological safety of 

the Bactiguard coating [33,34]. In addition, since the coating is 

covalently bonded to the substrate, it does not meet the definition of 

a ‘nanomaterial’ according to the definition stated in the 2017/745/EU 

Medical Device Regulation [35].

Mechanism of Action
The noble metals in the Bactiguard coating have different electro-

potentials and so, in combination, this results in a ‘galvanic effect’ 

that generates pico-currents (trillionth of an Ampere, 10-12 A) on the 

implant surface. These pico-currents lead to reduced adhesion of 

microorganisms to coated surfaces and, consequently, decreased 

possibility of biofilm formation, as discussed later. [36,37,38]. 

The electric potentials and currents that produce this galvanic effect 

in the coating have been measured via Electrostatic Force Microscopy 

(EFM) [39] and PeakForce TUNA Atomic Force Microscopy (AFM) [40], 

respectively (Figure 5). The current was found to vary between 0 to 

almost 250 pA, with an average of 71 pA compared to 0.17 pA in the 

uncoated control [40]. The magnitude of these currents is very small, 

and only detectable in vitro with these highly sensitive instruments.

The measured currents affect microbial adhesion by interfering 

with the respiratory chain, which in bacteria is located in the inter-

membrane space, thus close to the surrounding environment. On 

the contrary, in eukaryotic (human) cells, which are about ten times 

larger than bacteria, the mitochondria (the respiratory organelles) are 

situated inside the cell membrane and are therefore more protected 

and less affected by electrical currents of such a small magnitude [41].

While t5e galvanic effect requires the release of a very small amount 

of silver, the amount released during elution studies was found to be 

below the minimum inhibitory concentrations (MIC) reported in the 

literature for ionic silver [42]. The absence of inherent antibacterial 

properties due to this release of silver from the coating has also been 

confirmed with zone of inhibition tests, where none of the coated 

samples prevented or inhibited bacterial growth [42]. This is further 

evidence that the primary mechanism of action of the Bactiguard 

Technology is the galvanic effect.

Figure 3. SEM micrographs of a titanium substrate with the 
Bactiguard Technology at lower (left) and higher (right) magnification.  
(SEM images taken internally at Zimmer Biomet)

Figure 4. ToF-SIMS image showing the distribution of palladium (red) 
and silver (blue) on a silicone substrate [32].

Figure 5. Top: Current distribution over a line on coated and uncoated 
stainless steel, measured using PeakForce TUNA AFM [40]. Bottom: 
EFM image showing the electric potential distribution on Bactiguard-
coated glass slide [39].
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Experimental and Clinical Evidence
In Vitro Evidence
The anti-adhesive nature of the Bactiguard coating has been 

demonstrated through in vitro microbial tests based on methods 

adapted from the work of Ahearn and co-workers at Georgia State 

University [43,44]. Numerous substrates, representing different 

Bactiguard-coated devices, have been tested against different 

microbial species; relevant results are summarised in Table 2.

S. aureus P. aeruginosa

Ti6Al4V rods 84% 99.997%

BIP Foley catheter 
(latex)

N.T. 85%

BIP Foley catheter 
(silicone)

97% (98% MRSA) 81%

BIP ETT (PVC) 91% (81% MRSA) 97%

BIP CVC  
(Polyurethane)

75%  
(79% coagulase 
negative S. aureus)

77%

Table 2. Reduction in adhesion of Staphylococcus aureus and 
Pseudomonas aeruginosa when the Bactiguard coating was applied 
to different substrates, compared to uncoated controls [45]. The 
Ti6Al4V rods were supplied by Zimmer Biomet. MRSA: methicillin-
resistant Staphylococcus aureus; N.T.: Not tested.

Clinical Evidence
The reduction in bacterial adhesion observed in vitro has been 

shown to translate into reduction in infection rates in the clinical 

setting as well, for all Bactiguard-coated devices. Since urinary 

catheters were the first coated devices to enter the market, numerous 

studies have been published over the years reporting positive 

outcomes [46,47,48,49,50,51], the most recent being a randomised, 

prospective, multicentre study on 1,000 patients that showed a 

reduction in infections of 69 % compared to uncoated catheters over 

a mean duration of catheterization of 11 days [52]. A 52 % reduction 

in infection rate (median catheterization time 13 days) [53] and 

significantly fewer adverse events (mean catheterization time 9.2 

days, range 4 to 16 days) [54] were also observed for Bactiguard 

coated CVC devices, whilst ETT devices showed reduced high-grade 

biofilm formation (median intubation time 3.6 days) [55] and a 67 % 

reduction in infection rates at 5 days [56].

A recent single-centre, prospective study on 148 trauma patients 

showed an 80 % reduction at 24 months (odds ratio 0.2, 95% confidence 

interval [0.07-0.55], p=0.002) in infection rates between the study 

group, who received Bactiguard-coated titanium alloy Orthosyn tibial 

and femoral IM nails (Vigilenz), and the uncoated control group, as 

well as some reduction in revision rates [57]. In addition, the same 

study also observed a 100 % rate of bony union in the study group, 

compared to 84 % in the control group [57]. This is in agreement with 

what was previously observed with Bactiguard-coated, commercially 

pure titanium screws, which presented comparable bone integration 

to that of uncoated screws in an in vivo animal model [58].

Durability
The durability of the coating after implantation has been observed 

in a retrieval study including qualitative and quantitative analysis of 

a nail retrieved from a patient after 8 months: all the metal elements 

of the coating were still detected, and were still within the coating 

specification [31], which suggests that the coating was still effective. 

This is also supported by clinical studies related to Bactiguard-coated 

devices, which have shown that the use of these products reduces the 

number of antibiotic days [47], as well as the prevalence of antibiotic 

resistance in the treated population [48].

Notably, no adverse event related to the Bactiguard coating has ever 

been recorded over more than 25 years that products have been on 

the market [59]. This includes CVCs, where the Bactiguard coating is 

in direct contact with the blood stream, and Foley urinary catheters 

periodically changed throughout the lifetime of some patients, thus 

subjecting them to the repeated exposure to the coating every time 

the catheter is exchanged.

Conclusion
The Bactiguard Technology consists of a thin, non-continuous layer of 

clusters of a silver, gold and palladium alloy, which generates galvanic 

currents that reduce microbial adhesion to implant surfaces, and thus 

decrease the possibility of biofilm formation.

The coating is non-eluting, durable, and does not contain antibiotics. 

This avoids challenges associated with handling of products or their 

shipping and storage, as it does not require controlled temperatures 

and conditions as seen with alternative solutions using antibiotics.

The Bactiguard Technology is well-established, with proven clinical 

safety and efficacy in reducing infection rates from urinary catheters, 

endotracheal tubes and central venous catheters.

The use of the Bactiguard Technology on titanium alloys for trauma 

applications has also shown effectiveness, and is expected to aid in 

reducing the burden of orthopaedic implant associated infections, 

while also supporting fracture repair.

Although the use of Bactiguard-coated intramedullary nails does not 

substitute for standard preventive antibiotic protocols, the availability 

of a non-antibiotic prophylactic solution provides an alternative 

approach to infection management. This is particularly timely given 

that the current infection control scenario is ever more challenged by 

antibiotic resistance. 



Disclaimers
ZNN and ANN Bactiguard are intended to reduce the risk of implant 
related infections, but are not indicated for the treatment of 
established infections.

Use of this product does not replace existing standard practice for 
infection control such as the use of prophylactic antibiotics.
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